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1 Introduction

How do individuals form expectations about future inflation? The answer to this question is

of central importance both for monetary policy and for individual financial and consumption

decisions. Despite a large volume of research, there is still little convergence on the best

model to predict inflation expectations (see Mankiw, Reis, and Wolfers (2003); Blanchflower

and Kelly (2008)). The “stickiness” of inflation rate changes (Sims (1998), Mankiw and

Reis (2006)) and the empirical heterogeneity in the formation of expectations remain hard

to reconcile with existing models. Similar concerns apply to the formation of macro-relevant

expectations and their influence on aggregate dynamics more generally, as discussed, for

example, in Fuster, Laibson, and Mendel (2010) and Fuster, Hebert, and Laibson (2011).

In this paper, we that individuals’ personal experiences play an important role that is

absent from existing models. We argue that, when forming macroeconomic expectations,

individuals put a higher weight on realizations of macroeconomic data experienced during

their life-times compared with other available historical data.

Such learning from experience carries a rich set of implications. First, expectations are

history-dependent. For example, the experience of high inflation rates may shape the inflation

expectations of cohorts that have lived through this period for a substantial amount of time.

Second, beliefs are heterogeneous. Young individuals place more weight on recent data than

older individuals since recent experiences make up a larger part of their life-times so far. As

a result, different generations tend to disagree about the future. Third, learning dynamics

are perpetual. Beliefs keep fluctuating and do not converge in the long-run, as weights

on historical data diminish when old generations disappear and new generations emerge.

Averaged across cohorts, expectations resemble those obtained from constant-gain learning

algorithms commonly used in macroeconomics; but between cohorts, the speed of updating

and the resulting beliefs are heterogeneous.

We test the experience-based model using 57 years of microdata on inflation expectations

from the Reuters/Michigan Survey of Consumers (MSC). In our empirical framework, we
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assume that individuals employ regression-based forecasting rules similar to those used in

the adaptive learning literature, in particular Marcet and Sargent (1989), but with the twist

that we allow individuals to overweigh data realized during their life-times so far. Specifically,

individuals use inflation rates experienced in the past to recursively estimate an AR(1) model

of future inflation. The learning-from-experience mechanism is implemented by allowing the

gain, i.e., the strength of updating in response to surprise inflation, to depend on age. Thus,

young individuals react more strongly to an inflation surprise than older individuals who have

more data accumulated in their life-time histories. A gain parameter determines how fast

these gains decrease with age as more data accumulates. We estimate this gain parameter

empirically by fitting the learning rule to the individual inflation expectations reported in

the MSC.

The availability of microdata is crucial for our estimation since our identification strat-

egy exploits time-variation in cross-sectional differences of inflation experiences and relates

it to time-variation of cross-sectional differences in inflation expectations. The time-series

variation in cross-sectional heterogeneity allows us to employ time dummies in our estima-

tions and thus to separate the experience effect from time trends or any other time-specific

determinants of inflation expectations. For example, when forming expectations, individuals

might also draw, to some extent, on the full inflation history available at a given time, or on

published forecasts of professional forecasters. With the inclusion of time dummies, the expe-

rience coefficient isolates the incremental explanatory power of life-time experiences. Hence,

our empirical approach allows us to rule out that omitted macroeconomic variables or any

other unobserved effects common to all individuals bias the estimation results. This is a key

distinction from other models of belief formation, such as adaptive learning models, where

parameters are fit to aggregate time-series of (mean or median) expectations.

Our estimation results show that learning from experience has an economically important

effect on inflation expectations. Individuals of different ages differ significantly in their in-

flation expectations, and these differences are well explained by differences in their inflation
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experiences. The heterogeneity is particularly pronounced following periods of high surprise

inflation. For example, in the late 1970s and early 1980s, the average inflation expectation

of younger individuals (< 40 years of age) exceeded that of older individuals (> 60 years)

by several percentage points. This divergence is consistent with the experience of younger

individuals being dominated by the high-inflation years of the 1970s, while older individuals

also experienced the low-inflation years of the 1950s and 1960s. The discrepancy faded away

only slowly by the 1990s after many years of moderate inflation. Our model explains this

difference as the result of younger individuals perceiving inflation to be (i) higher on aver-

age and (ii) more persistent when inflation rates were high until the early 1980s, but less

persistent when inflation rates dropped subsequently. Our estimates of the gain parameter

also imply that recent inflation experiences receive higher weight than experiences earlier in

life, though experiences from 20 to 30 years ago still have some long-run effects for older

individuals.

We also explore the aggregate implications of learning from experience. We show that if

one averages experience-based expectations across cohorts at each point in time, the aver-

age learning-from-experience forecast matches the average survey expectations closely. The

similarity is remarkable because our estimation did not utilize any information about the

level of the average survey expectations, only information about cross-sectional differences

between cohorts. Hence, learning from experience helps to simultaneously predict both the

cross-section and the time-series of inflation expectations.

We also show that the average learning-from-experience forecast can be approximated

quite closely with constant-gain learning algorithms that are popular in macroeconomics. The

constant-gain parameter that best matches our estimated learning-from-experience weights,

γ = 0.0180, turns out to be quantitatively very similar to those that Orphanides and Williams

(2005) and Milani (2007) have estimated by fitting the parameters to macroeconomic data

and aggregate survey expectations, 0.0183 and 0.02 respectively. As with the survey data,

this similarity is remarkable because we did not calibrate the learning-from-experience rule
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to match the average level of inflation expectations or any macroeconomic data.

At the same time, learning from experience and constant-gain learning differ fundamen-

tally in their motivation for the observed down-weighting of past data: rather than reflecting

the response to structural changes in macroeconomic time series, learning from experience is

based on the notion that memory of past data is lost as older generations die and new ones

are born. We show that the structural-change based explanation, which is usually advanced

in constant-gain learning models, is hard to reconcile with the empirical evidence: both pro-

fessional forecasters (in the SPF ) and households (in the MSC) discount past inflation data

much less than the degree of structural change in the time-series of inflation would call for.

Moreover, the degree of structural change in different time series does not seem to be related

much to the gains implied by survey expectations.

We also emphasize an econometric advantage of the learning-from-experience approach:

The gain parameter is identified purely from cross-sectional variation. Compared with em-

pirical work on adaptive learning that uses only aggregate time-series data, this opens up a

new dimension of data that helps pin down the parameters of individuals’ learning rule. This

is useful in two ways. First, it helps alleviate the concern that models of boundedly rational

learning involve too many degrees of freedom, rendering the model not falsifiable.1 Second,

empirically, the identification from cross-sectional data offers some advantage in capturing the

dynamics of survey expectations. We show that estimating the gain parameter purely from

cross-sectional variation without our learning-from-experience framework provides a better

out-of-sample fit to mean inflation expectations than estimating a constant-gain rule from

time-series data, even though the estimation within the learning-from-experience framework

did use any data on the level of mean expectations at all.

Our paper connects to several strands of literature. A large macroeconomic literature

analyzes the formation of expectations. While the crucial role of expectations for macroeco-
1This is the first of three concerns expressed in Sargent (1993) that Marcet and Nicolini (2003) summarize

as “... using models of boundedly rational learning would entail problems similar to those found in models
of adaptive expectations of the prerational-expectations era, namely: (i) too many degrees of freedom are
available to the economist, so the model is not falsifiable; ...”
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nomic outcomes and asset prices is well understood at least since Keynes (1936), we know

less well how economic agents form their subjective beliefs about the future. The litera-

ture on adaptive learning (see Bray (1982); Sargent (1993); Evans and Honkapohja (2001))

views individual agents as econometricians who make forecasts based on simple forecasting

rules estimated on historical data. Fuster, Laibson, and Mendel (2010) and Fuster, Hebert,

and Laibson (2011) propose a model of “natural expectations” and demonstrate its ability

to match hump-shaped dynamics in different economic time series. Yet, there is little di-

rect empirical evidence on the actual forecasting rules employed by individuals, even though

the formation of inflation expectations, and macroeconomic expectations more generally, are

of first-order importance for macroeconomic policy (Bernanke (2007)). For example, dis-

agreement about future inflation leads to disagreement about real interest rates (given that

the nominal interest rate is fixed in financial markets), which in turn influences borrowing

and lending among households. Piazzesi and Schneider (2012) show that the disagreement

between younger and older households in the late 1970s helps understand quantities of house-

hold borrowing and lending, shifts in household portfolios, and the prices of real assets at the

time.

Conceptually, our approach is related to bounded-memory learning in Honkapohja and

Mitra (2003) in that memory of past data is lost or, in our case, underweighted. How-

ever, while bounded-memory learning agents are homogeneous, the memories of agents in

the experience-based model differ depending on their age. Our approach also relates to the

boundedly-rational learning model in Marcet and Nicolini (2003), where agents learn differ-

ently during stable and during instable periods. Our approach pins the gain in learning to

agents’ age rather than a threshold rule that is chosen to fit the data.

There is a small, but growing literature that looks at heterogeneity in expectations for-

mation with microdata. Building on early work by Cukierman and Wachtel (1979), Mankiw,

Reis, and Wolfers (2003) examine the time-variation in dispersion in inflation expectations

and relate it to models of “sticky information.” Carroll (2003) further investigates the sticky-
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information model, but with aggregate data on inflation expectations. Bryan and Venkatu

(2001) provide evidence of gender-specific heterogeneity in inflation expections as well as

other demographics-based differences. Branch (2004), Branch (2007), and Pfajfar and San-

toro (2010) estimate from survey data how individuals choose among competing forecasting

models. Piazzesi and Schneider (2012) incorporate survey data on heterogeneous subjective

inflation expectation into asset pricing, while Piazzesi and Schneider (2011) use data on sub-

jective interest rate expectations and a model with adaptive learning. Shiller (1997) and

Ehrmann and Tzamourani (2009) examine the relation between cross-country variation in

inflation histories and the public’s attitudes towards inflation-fighting policies. Our paper

contributes to this literature by demonstrating that learning from experience plays a signif-

icant role in expectations formation and produces both heterogeneity in expectations and

gradually fading memory over time.

Our analysis is related to earlier empirical findings in Malmendier and Nagel (2011),

who show that past stock-market and bond-market experiences predict future risk taking of

individual investors. Interestingly, the weighting of past experiences implied by the learning-

from-experience rules estimated in this paper matches very closely the weighting scheme

estimated from a completely different data source, the Survey of Consumer Finances, in

Malmendier and Nagel (2011). However, the data used in Malmendier and Nagel (2011) did

not allow to determine whether these effects are driven by beliefs (e.g., experiences of high

stock returns make individuals more optimistic) or by endogenous preference formation (e.g.,

experiences of high stock returns make individuals less risk averse or lead to other changes in

“tastes” for certain asset classes). The data used in this paper measures directly individual

expectations and thus identifies the beliefs channel.

Evidence consistent with learning-from-experience effects is also presented in Vissing-

Jorgensen (2003) and Greenwood and Nagel (2009), who show that young investors and young

mutual fund managers in the late 90s were more optimistic about stocks, and in particular

technology stocks, than older investors, consistent with being more strongly influenced by
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their recent good experience. Vissing-Jorgensen also points out that there is age-heterogeneity

of inflation expectations in the late 1970s and early 1980s. Kaustia and Knüpfer (2008) and

Chiang, Hirshleifer, Qian, and Sherman (2011) find that investors’ participation and bidding

strategies in initial public offerings is influenced by extrapolation from previously experienced

IPO returns.

The rest of the paper is organized as follows. Section 2 introduces our experienced-based

learning framework and estimation approach. Section 3 discusses the data set on inflation

expectations. Section 4 presents our core set of results on learning-from-experience effects in

inflation expectations. In Section 5, we look at the implications of our results at the aggregate

level. Section 6 concludes.

2 Learning from experience

Consider two individuals, one is member of the cohort born at time s, and the other belongs

to the cohort born at time s + j. How do they form expectations of next period’s inflation,

πt+1, at time t > s+ j? The essence of the learning-from-experience hypothesis is that they

place different weights on recent and distant historical data, reflecting the different inflation

histories they have experienced in their lives so far. The younger individual, born at s + j,

has experienced a shorter data set, and is therefore more strongly influenced by recent data.

As a result, the two individuals may produce different forecasts at the same point in time.

Our analytical framework builds on the forecasting rules proposed in the adaptive learn-

ing literature, in particular Marcet and Sargent (1989). (See also Sargent (1993) and Evans

and Honkapohja (2001).) In this literature, agents are assumed to use relatively simple fore-

casting models, motivated by cognitive and computational constraints that limit individuals

in their ability to make optimal forecasts. The algorithms represent “rules of thumb” that

practitioners and individuals might employ. The key departure from the standard adaptive-

learning models is that we allow individuals to put more weight on data experienced during

their lifetimes than on other historical data. This gives rise to cross-sectional differences in
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expectations between different cohorts. Our analysis also differs from much of the adaptive

learning literature in that we are interested in identifying and estimating individuals’ actual

forecasting rules, while much of the earlier work on adaptive learning focuses on analyzing

the conditions under which simple learning rules lead to convergence to rational-expectations

equilibria.

We model the perceived law of motion that individuals are trying to estimate as an AR(1)

process, as, for example, in Orphanides and Williams (2004):

πt+1 = α+ φπt + ηt+1. (1)

Individuals estimate b ≡ (α, φ)′ recursively from past data following

bt,s = bt−1,s + γt,sR
−1
t,s xt−1(πt − b′t−1,sxt−1) (2)

Rt,s = Rt−1,s + γt,s(xt−1x
′
t−1 −Rt−1,s) (3)

where xt ≡ (1, πt)′ and the recursion is started at some point in the distant past.2 The

sequence of gains γt,s in the recursive algorithm determines the degree of updating cohort s

applies when faced with an inflation surprise. For example, with γt,s = 1/t, the algorithm

represents a recursive formulation of an ordinary least squares estimation that uses all data

available until time t with equal weights (see Evans and Honkapohja (2001)). With γt,s set

to a constant, it represents a constant-gain learning algorithm, which weights past data with

exponentially decaying weights. Our key modification of the standard learning framework

is that we let the gain γ depend on the age t − s of the members of cohort s. As a result,

individuals of different age can be heterogeneous in their forecasts and adjust their forecasts

to different degrees in response to surprise inflation. Given the perceived law of motion in

equation (1), these cross-sectional differences can arise from two sources: first, from differences
2We will see below that, in our setting, past data gets downweighted sufficiently fast so that initial conditions

do not exert any relevant influence.
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in individuals’ perception of the mean, µ = α(1− φ)−1, and, second, from differences in the

perception of persistence, φ, of deviations of recent inflation from this perceived mean.

Specifically, we consider the following decreasing-gain specification,

γt,s =


θ
t−s if t− s ≥ θ

1 if t− s < θ,

(4)

where θ > 0 is a constant parameter that determines the shape of the implied function of

weights on past experienced inflation observations. We let the recursion start with γt,s = 1

for t − s < θ, which implies that data before birth is ignored. (As explained below, our

econometric specification does allow for all available historical data to affect the forecast,

but isolates incremental the effect of data realized during individuals’ life-times on expecta-

tion formation.) This specification is the same as in Marcet and Sargent (1989) with one

modification: the gain here is decreasing in age, not in time, and individuals use only data

realized during their life-times. The specification allows for the possibility that experiences

in the distant past have a different influence than more recent experiences. For example,

the memory of past episodes of high inflation might fade away over time, as also assumed

in standard models such as constant-gain learning. Alternatively, high-inflation experiences

at young age, perhaps conveyed through the worries of parents, might leave a particularly

strong and lasting impression on the formation of beliefs about future inflation.

Figure 1 illustrates the role of the parameter θ. The top graph of Figure 1 presents the

sequences of gains γ as a function of age for different values of θ. Regardless of the value

of θ, gains decrease with age. This is sensible in the context of learning from experience.

Young individuals, who have experienced only a small set of historical data, presumably have

a higher gain than older individuals, who have experienced a longer data history, and for

whom a single inflation surprise observation should have a weaker marginal influence. The

down-weighting of past data is also consistent with the corresponding assumption in constant-

gain learning models. There, the motivations for assuming such down-weighting of past data
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are, for example, that individuals believe that a structural break may have occurred or that

they perceive the parameters of the inflation process to be time-varying. Our model adds

additional micro-foundation to that assumed pattern.

The top graph of Figure 1 also illustrates that the higher θ is, the slower is the rate at

which the gains decrease with age and, hence, the less weight is given to observations that are

more distant in the past. The latter implication is further illustrated in the bottom graph of

Figure 1, which shows the implied weights on past inflation observations as a function of the

time lag relative to current time t for the example of 50-year (200 quarters) old individual.

For θ = 1, all historical observations since birth are weighted equally. For θ > 1, instead,

weights on earlier observations are lower than those on more recent observations. With θ = 3

very little weight is put on observations in the first 50 quarters since birth towards the right

of the bottom graph.

In other words, our gain parametrization is flexible in accommodating different weighing

schemes. The weights can be monotonically increasing, decreasing, or flat. An additional

advantage of the decreasing-gain specification in equation (4) is that, for appropriate choices

of the weighting parameters, it produces weight sequences that are virtually identical to

those in Malmendier and Nagel (2011). (See Appendix A.) This allows us to compare the

weights estimated from inflation expectations with those estimated from portfolio allocations

in Malmendier and Nagel (2011).

In addition to past inflation experiences, we allow all other information sources to affect

inflation expectations. Let πht = h−1
∑h

i=1 πt−h+i denote the average annualized inflation

rate over the h periods leading up to t, and let πht+h|t,s be the forecast of πht+h made by cohort

s at time t, as indicated by the subscript |t, s. The learning-from-experience component of

individuals’ one-step-ahead forecast of inflation is obtained from (2) as τ1
t+1|t,s = b′t,sxt, and

the multi-period version of it, τht+h|t,s, is obtained by iterating on the forecasting model at the

time-t estimates bt,s. We capture the influence of information sources other than experienced
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Figure 1: Examples of gain sequences (top) and associated implied weighting of past data
(bottom) for a 50-year old individual. The top panel shows the sequence of gains as a function
of age over the course of a 50-year individual’s life. The bottom panel shows the weighting
of past data implied by the gain sequence in the top panel, with the weights for most recent
data to the left and weights for early life experience to the right.
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inflation by assuming

πht+h|t,s = βτht+h|t,s + (1− β) fht . (5)

That is, the subjective expectation is a weighted average of the learning-from-experience

component τht+h|t,s and an unobserved common component fht of individuals’ h-period fore-

casts. This unobserved component fht could represent any kind of forecast based on common

information available to all individuals at time t, such as the opinion of professional fore-

casters or the representation of their opinions in the news media (e.g., as in Carroll (2003)).

Alternatively, fht could capture a common component of individual forecasts that is driven by

all available historical data. In either case, the coefficient β captures the incremental contri-

bution of life-time experiences τht+h|t,s to πht+h|t,s over and above these common components.

Thus, we do not assume that individuals only use data realized during their life-times, but

isolate empirically the incremental effect of life-time experiences on expectations formation.

Empirically, we estimate the following modification of equation (5):

π̃ht+h|t,s = βτht+h|t,s + δh′Dt + εht,s, (6)

where π̃ht+h|t,s denotes measured inflation expectations from survey data. In this estimating

equation, we absorb the unobserved fht with a vector of time dummies Dt. We also add the

disturbance εht,s, which we assume to be uncorrelated with τht+h|t,s, but which is allowed to

be correlated over time within cohorts and between cohorts within the same time period.

It captures, for example, measurement error in the survey data and idiosyncratic factors

influencing expectations beyond those explicitly considered here. We use this specification

to jointly estimate θ and β with non-linear least squares. (Recall that τht+h|t,s is a non-linear

function of θ.)

The presence of time dummies in equation (6) implies that we identify β and θ, and

hence the learning-from-experience effect on expectations, from cross-sectional differences

between the subjective inflation expectations of individuals of different ages, and from the
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evolution of those cross-sectional differences over time. The cross-sectional identification

allows to rule out confounds affecting prior work, which estimates adaptive learning rules from

aggregate data, e.g., from the time-series of mean or median inflation expectations. Under the

prior approach, it is hard to establish whether the time-series relationship between inflation

expectations and lagged inflation truly reflects adaptive learning or, instead, some other

formation mechanism (e.g., rational expectations) that happens to generate expectations

that are highly correlated. In contrast, experience-based learning makes a clear prediction

about the cross-section: Expectations should be heterogeneous by age, and for young people

they should be more closely related to recent data than for older people. Moreover, we can

estimate the gain parameter θ that determines the learning speed from this cross-sectional

heterogeneity. This provides a new source of identification for the learning speed in adaptive

learning algorithms.

3 Data

To test whether past experiences affect expectations, we use long-term historical data on

the consumer price index (CPI) from Shiller (2005). In order to fully capture experienced

inflation during the lifetimes of even the oldest individuals in the expectations survey sample,

we need inflation data stretching back 74 years before the start of the survey in 1953. We

obtain the time series of inflation data since 1872 (until the end of 2009) from Robert Shiller’s

website and calculate annualized quarterly log inflation rates. Figure 2 shows annual inflation

rates from this series.

The inflation expectations microdata is from the Reuters/Michigan Survey of Consumers

(MSC), conducted by the Survey Research Center at the University of Michigan. These

surveys were administered since 1953, initially three times per year, then quarterly from

1960 through 1977, and monthly since 1978 (see Curtin (1982)). We obtain data for surveys

conducted from 1953 to 1977 from the Inter-university Consortium for Political and Social

Research (ICPSR) at the University of Michigan. From 1959 to 1971, the questions of the

13



−.
2

−.
1

0
.1

.2
In
fla
tio
n

1877q1 1910q3 1944q1 1977q3 2011q1
Quarter

Figure 2: Annual CPI inflation rates

winter-quarter Survey of Consumer Attitudes were administered as part of the Survey of

Consumer Finances (SCF ), and so we obtain those data from the SCF files at ICPSR.

The data from 1978 to 2007 is available in from the University of Michigan Survey Research

Center. Appendix B provides more detail on the data.

In most periods, the survey aks two questions about expected inflation, one about the

expected direction of future price changes (“up,” “same,” or “down”) and one about the

expected percentage of price changes. Our analysis aims to make quantitative predictions and

thus focuses on the percentage expectations. However, for quarters in which the survey asks

only the categorical questions about the expected direction, we are able to impute percentage

responses from the categorical responses. The imputation procedure is described in detail in

Appendix C. Figure 3 highlights the periods in which we have percentage expectations data

in light grey and the quarters in which the survey asks only the categorical questions in dark

grey.

Since our learning-from-experience hypothesis predicts that inflation expectations should
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Figure 3: Four-quarter moving averages of mean one-year inflation expectations of young
(age < 40) and old (age > 60) in excess of the full-sample cross-sectional mean expectation.
Percentage forecasts are available from the survey in periods shaded in light grey; they
are imputed from categorical responses in the periods shaded in dark grey; and they are
unavailable in unshaded periods.

be heterogeneous across different age groups, we aggregate the data at the cohort level, i.e.,

by birth year. For each survey month and each cohort, we compute the mean inflation

expectations of all members of the cohort. In the computation of this mean, we apply the

sample weights provided by the MSC. If multiple monthly surveys are administered within

the same quarter, we average the monthly means within each quarter to make the survey

data compatible with our quarterly inflation rate series.

We restrict our sample to respondents whose age ranges from 25 to 74. This means that

for each cohort we obtain a quarterly series of inflation expectations that covers the time

during which members of this cohort are from 25 to 74 years old.

To provide some sense of the variation in the data, Figure 3 plots the average inflation

expectations of young individuals (averaging across all cohorts that are in the age range from
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25 to 39) and old individuals (averaging across cohorts that are in the age range 61 to 74),

relative to the full-sample cross-sectional mean expectation at each point in time. To bet-

ter illustrate lower frequency variation, we plot the data as four-quarter moving averages.

The dispersion across age groups widens to almost 3 percentage points (pp) during the high

inflation years of the 1970s and early 1980s. The fact that young individuals at the time

expected higher inflation is consistent with the learning-from-experience story: The expe-

rience of young individuals around 1980 was dominated by the recent high-inflation years,

while older individuals’ experience also included the modest inflation rates of earlier decades.

For younger individuals, with a smaller set of experienced-inflation data points, these recent

observations exert a stronger influence on their expectations. As we show below, differences

in the perceived persistence of inflation between young and old matter as well, in addition to

the differences in perceived mean inflation.

4 Estimation of the learning-from-experience forecast model

from cohort data

We now estimate the learning-from-experience effects by fitting the estimating equation (6)

and the underlying AR(1) model to the MSC inflation expectations data, using nonlinear

least squares on the cohort-level aggregate data. We relate survey expectations measured

in quarter t to learning-from-experience forecasts τht+h|t,s, where we assume that the data

available to individuals in constructing τht+h|t,s are quarterly inflation rates until the end of

quarter t − 1. We work with survey expectations of inflation rates over the next year, so

h = 4. To account for possible serial correlation of residuals within cohorts and correlation

between cohorts within the same time period, we report standard errors that are robust to

two-way clustering by cohort and calendar quarter.
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Table 1: Learning-from-experience model: Estimates from cohort data

Each cohort born at time s is assumed to recursively estimate an AR(1) model of inflation, with
the decreasing gain γt,s = θ/(t − s) and using quarterly annualized inflation rate data up to the
end of quarter t− 1. The table reports the results of non-linear least-squares regressions of one-year
survey inflation expectations in quarter t (cohort means) on these learning-from-experience forecasts.
Standard errors reported in parentheses are two-way clustered by time and cohort. The sample period
runs from 1953 to 2009 (with gaps).

Baseline Restricted
(i) (ii) (iii) (iv) (v)

Gain parameter θ 3.044 3.144 3.976 4.144 3.044
(0.233) (0.257) (0.494) (0.446) -

Sensitivity β 0.672 0.675 0.664 0.693 0.672
(0.076) (0.079) (0.084) (0.111) (0.093)

Time dummies Yes Yes No No No
Imputed data included Yes No No No No

Restrictions fh
t = SPFt−1 fh

t = τ̄h
t fh

t = τ̄h
t

θ = 3.044

Adj. R2 0.637 0.635 - - -
RMSE 0.0148 0.0152 0.0189 0.0191 0.0194
#Obs. 8215 7650 7400 7650 7650

4.1 Baseline results

Table 1 presents the estimation results. In the full sample, we estimate the gain parameter

θ to equal 3.044 (s.e. 0.233). Comparing this estimate of θ with the illustration in Figure

1 one can see that the estimate implies weights that are declining a bit faster than linearly.

The estimation results in column (i) also show that there is a strong relationship between

the learning-from-experience forecast τht+h|t,s and measured inflation expectations, captured

by the sensitivity parameter β, which we estimate to be 0.672 (s.e. 0.076). The magnitude

of β implies that, when two individuals differ in their weighted-average inflation experiences

by 1 pp, their one-year inflation expectations differ by 0.672 pp on average.

To check whether the imputation of percentage responses from categorical responses has
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any influence on the results, we re-run the estimation without the imputed data, using only

those time periods in which percentage responses are directly available. The results are

presented in column (ii). As can be seen, whether or not imputed data is used has little effect

on the results. We estimate a similar gain parameter, θ = 3.144 (s.e. 0.257), and a similar

sensitivity paramenter β = 0.675 (s.e. 0.079).

The presence of the time dummies in these regressions is important to rule out that the

estimates pick up time-specific effects unrelated to learning from experience. If individual

expectations were unaffected by inflation experiences—for example, if all individuals learned

from the same historical data set in the same way, applying the same forecasting rules—then β

would be estimated to be zero. The effect of historical inflation rates, including “experienced”

inflation rates, on current forecasts would be picked up by the time dummies. The fact that

β is not equal to zero is direct evidence that differences in experienced-inflation histories are

correlated with differences in expectations. The positive β-estimate also implies that recent

observations exert a stronger influence on expectations of the young, because their set of

experienced historical inflation rates comprises only relatively few observations.

Interestingly, the weighting of past inflation experiences implied by the point estimates

of θ is similar to the weighting implied by the estimates obtained in Malmendier and Nagel

(2011) by relating data on household asset allocation to experienced risky asset returns.3

This is remarkable since the data on inflation expectations is drawn from a different data

set, and since we look at beliefs about inflation rather than asset allocation choices. Despite

those differences, the dependence on life-time macroeconomic histories in both cases seems

to imply a similar weighting of experienced data. Taken together, our findings imply that a

common expectations-formation mechanism may be driving both sets of results.

One possible alternative theory for these (time-varying) age-related differences in inflation

expectations is that different age groups consume different consumption baskets, and that
3The weighting function in Malmendier and Nagel (2011) is controlled by a parameter λ which relates to

θ as θ ≈ λ+ 1 (see Appendix A), and which is estimated to be in the range from 1.1 to 1.9, depending on the
specification.
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individuals form inflation expectations based on the (recent) inflation rates they observe on

their age-specific consumption baskets. The concern would be that these inflation differentials

between age-specific consumption baskets could be correlated with differences in age-specific

learning-from-experience forecasts that we construct. In other words, inflation differentials

between age-specific consumption baskets could be a correlated omitted variable. To address

this issue, we re-run the regressions in Table 1 controlling for differences between inflation

rates on consumption baskets of the elderly and overall CPI inflation rates. We measure

the inflation rates of the elderly with the experimental CPI for the elderly series (CPI-E)

provided by the Bureau of Labor Statistics. The results reported in Appendix D show that

this does not affect our results. Appendix D also reports on a similar analysis with a gasoline

price series to check whether age-specific sensitivity to gasoline price inflation could drive

the results, but we find that this extension does not add explanatory power and does not

significantly affect our learning-rule parameter estimates. The cross-sectional differences that

we attribute to learning-from-experience effects are not explained by differences in age-specific

inflation rates.

To get a better sense of the extent to which learning-from-experience effects explain

cross-sectional differences in inflation expectations, Figure 4 presents plots of fitted values

for different age groups. Panel (a) is based on the baseline estimates from column (i) in

Table 1, Panel (b) reports the fitted values from the restricted model in column (iv). The

fit of the restricted model in Panel (b) is shown for the estimation sample, i.e., periods in

which non-imputed percentage expectations are available. For the purpose of these plots, we

average inflation expectations and the fitted values within the same young (age < 40) and

old (age > 60) categories that we used earlier in Figure 3. Since our baseline estimation with

time dummies focuses on cross-sectional differences, we plot the inflation expectations and

fitted values of these subgroups after subtracting the full-sample mean each period. Thus,

the plots focus on cross-sectional differences. To eliminate high-frequency variation, we show

4-quarter moving averages for both actual and fitted values. Fitted values are drawn as lines,
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Figure 4: Comparison of 4-quarter moving averages of actual and fitted one-year inflation
expectations for young and old in excess of the full-sample cross-sectional mean expectation.
The fitted values corresponds to column (i) in Table 1.

raw inflation expectations are shown as triangles (young) or circles (old). The plot shows

that the experience-based model does a good job of explaining the differences in inflation

expectations between young and old. In particular, it accounts, to a large extent, for the

large difference in expectations between young and old in the late 1970s and early 1980s.

4.2 Time path of perceived inflation process parameters

Figure 5 reports the persistence and unconditional mean inflation perceived by young and old

over the course of the sample, as implied by the estimate of θ from Table 1, column (i). The

figure shows that there has been first in increase and then a dramatic decline in the perceived

persistence and the perceived unconditional mean inflation rates. Young individuals’ views

about mean and persistence are much more volatile than older individuals’ views, as they

are more strongly influenced by recent data. For example, our estimates imply that at the

end of the sample period, young individuals’ inflation expectations are well anchored at
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Figure 5: Learning-from-experience AR(1) model estimates (with θ = 3.044) of autocorrela-
tion (top) and mean inflation (bottom) for young and old.
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low expected inflation rates, as the perceived persistence is close to zero. Older individuals

perceived inflation persistence, however, is still substantially above zero.

4.3 Exploring the common factor

The specification in (5) with time dummies is useful to cleanly demonstrate the existence

of the learning-from-experience effect with a test of the null hypothesis β = 0. It also al-

lows estimation of θ purely from cross-sectional differences, removing potentially confounding

unobserved factors that also affect expectations. On the other hand, it would be useful to

know to what extent variation in the levels of expectations rather than just cross-sectional

differences can be explained with the learning-from-experience forecasts. It would also be

useful to learn more about the nature of the common factor fht that is absorbed by the time

dummies in in (5). To explore this, columns (iii) to (v) in Table 1 consider restricted versions

of the estimating equation (5) that are estimated without time dummies and intercept, but

instead with observable proxies for fht .

One possibility is that fht captures individuals’ tendency to rely to some extent, in the for-

mation of their expectations, on the opinions of professional forecasters that get disseminated

in the media. To check this, we specify fht in (5) as the sum of the Survey of Professional

Forecasters (SPF ) forecast in quarter t−1 and a noise term ηht that is uncorrelated with the

SPF forecast and τht+h|t,s. Equation (5) becomes

πht+h|t,s = βτht+h|t,s + (1− β)SPFt−1 + (1− β) ηht . (7)

We estimate this equation without time dummies, which means we now utilize information

about levels in inflation expectations, not just cross-sectional differences, in the estimation.

For this reason, we remove the imputed data from the sample, because our imputation is only

designed to impute cross-sectional differences, but not levels. The number of observations

in column (iii) is further slightly lower than in column (ii) because SPF forecasts are not

available in a few quarters early in the sample.
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As column (iii) shows, replacing the time dummies with the SPF has little effect on the

estimate of β compared with column (ii). With 3.976 (s.e. 0.612), the estimate of θ is higher,

though, but the weighting of past inflation observations implied by this point estimate is still

quite similar to the weighting implied by the estimates in columns (i) and (ii). Moreover, the

point estimate is not far from those in columns (i) and (ii) in terms of standard errors. The

much bigger standard error in column (iii) compared with columns (i) and (ii) reflects that

the removal of the time dummies leaves the noise term ηht in (7) in the regression residual,

resulting in noisier estimates. The effect of the noise term can also be seen in the increase

in RMSE compared with columns (1) and (2).4 Nevertheless, the fact that the β estimate in

columns (iii) is virtually identical to those in columns (i) and (ii) indicates that SPF forecast

captures much of the component of ft that could be correlated with τht+h|t,s.

Column (iv) explores an alternative proxy for fht . The common component of individuals’

inflation expectations could be the result of a social learning process in which individuals with

different experienced inflation histories share their opinions, and, as a result, their beliefs

have a tendency to converge to the average belief, as in DeGroot (1974). To explore this

possibility, we represent fht as the sum of the mean learning-from-experience forecast across

all age groups, which we denote τ̄ht , and a noise term, and so equation (5) becomes

πht+h|t,s = βτht+h|t,s + (1− β) τ̄ht + (1− β) ηht . (8)

Column (iv) reports the results for this model. The estimates are almost identical to those

in column (iii). Evidently, the average learning-from-experience forecast is very close to the

SPF forecast and it seems to be a good representation of individuals common component of

inflation expectations. As in column (iii), though, θ is estimated with substantially higher

standard errors than in the specification with time dummies in columns (i) and (ii). For

this reason, we also explore the fit after fixing θ at its more precise estimate θ = 3.044 from
4Since this regression is run without intercept, the adj. R2 is not a useful measure of fit and we focus on

the RMSE.
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column (i). The result is shown in column (v). In this case, the RMSE is only slightly higher

than in column (iv), and the estimate of β is almost unchanged. Despite the slightly worse

in-sample fit, there is the possibility that the specification in column (v) might actually do

better out-of-sample because θ is estimated with greater precision. We return to this point

further below. For now we use model (8) with θ = 3.044 as our preferred specification.

5 Aggregate implications

Our focus so far was on inflation expectations at the cohort level, and on how cohort-specific

experiences help explain heterogeneity in expectations. We now show that experience-based

learning also helps explain the dynamics of aggregate (mean) inflation expectations.

First, we relate our approach to the existing literature on adaptive learning and show

that experience-based forecasts aggregate to average forecasts that closely resemble those

from constant-gain algorithms, which have been shown to explain macroeconomic time series

data. We argue that learning-from-experience provides a micro-underpinning for adaptive-

learning models,

We then discuss the differences between the existing approaches and learning from expe-

rience, both conceptually and econometrically. Conceptually, learning from experience builds

on psychological evidence on updating biases, rather than the assumption of a boundedly

rational (but otherwise optimized) choice of limited data processing, which had been hard

to reconcile with the empirical evidence. Econometrically, only the experience-based learn-

ing model allows us to estimate the updating speed from cross-sectional data, which helps

overcome the existing difficulties in identifying structural parameters in adaptive learning

models.

Our starting point is model (8). Averaging cross-sectionally across all cohorts each period,

and denoting cross-sectional averages with an upper bar, we get

π̄ht+h|t = τ̄ht + (1− β) η̄ht . (9)
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Thus, apart from the noise term η̄ht , the mean expectation is pinned down by the mean

learning-from-experience forecast across all age groups, τ̄ht .

5.1 Approximating constant-gain learning (and its aggregate implications)

In our learning-from-experience framework, individuals update their expectations with de-

creasing gain: as individuals age, their experienced set of data expands and their expectations

react less to a given inflation surprise than those of younger individuals. In contrast, the mean

learning-from-experience forecast, τ̄ht , behaves approximately as if it was generated from a

constant-gain learning algorithm: since the gain γt,s varies only by age t − s, its average

each period is constant (as long as the weight on each age group is constant over time). The

average learning-from-experience forecast is an approximation (rather than an exact match)

of a constant-gain learning forecast because the mean of the inflation-surprise term in (2) is

not exactly identical to the surprise arising in a constant-gain learning algorithm.

We illustrate how well the approximation with a constant gain works in Figure 6. The

figure compares the implied learning-from-experience weights on past inflation averaged across

all age groups (solid line) with the weights implied by constant-gain learning (dashed line).

We calculate the learning-from-experience weights based on our point estimate of θ = 3.044

from Table 1, column (i), averaged across all ages from 25 to 74 (equally weighted). We then

calculate the constant gain for which the constant-gain algorithm minimizes the squared

deviations from the above average learning-from-experience weights. The result is a constant

gain of γ = 0.0180, with implied weights as shown by the dashed line.

The figure shows that the weighting of past data is very similar. It is particularly note-

worthy that the deviation-minimizing constant gain γ = 0.0180 is virtually the same as the

gain that appears to be required to match aggregate expectations and macro time-series data.

For example, Milani (2007) reports that an estimate of γ = 0.0183 provides the best fit of

a DSGE model with constant-gain learning to macroeconomic variables. Orphanides and

Williams (2005) choose a gain of 0.02 to match the time series of inflation forecasts from
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Figure 6: Comparison of implied mean weights on past inflation observations under learning-
from-experience and constant-gain learning. The learning-from-experience weights for each
lag are calculated for each age at the point estimate θ = 3.044 from Table 1, column (i), and
then averaged across all ages. The weights implied by constant-gain learning are calculated
with gain γ = 0.0180, which minimizes squared deviations from the learning-from-experience
weights shown in the figure.

the SPF . Our estimate of γ was, instead, chosen to match the weights implied by our esti-

mate of θ from cross-sectional heterogeneity. We did not employ aggregate expectations and

realized inflation rates in estimation of θ, Hence, our estimates from between-cohort hetero-

geneity bring in new data, and their consistency with parameters chosen to fit time-series

data provides “out-of-sample” support for values of the gain parameter in this range. We

can conclude that the implications of learning from experience for expectations formation

in aggregate are likely to be very similar to those of the constant-gain learning algorithms,

which have been shown to be a good description of macroeconomic dynamics (e.g., Sargent

(1999), Orphanides and Williams (2005), Milani (2007)).
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5.2 Explaining aggregate inflation expectations

How well does the learning-from-experience model match survey expectations in aggregate?

Figure 7 shows both the time path of the actual averages from the raw survey data (circles)

and average experience-based forecasts (solid line), as before based on θ = 3.044). Since

our imputation of percentage responses only targeted cross-sectional differences, but not the

average level of percentage expectations, we omit all periods in which we only have categorical

inflation expectations data.

It is apparent from the figure that the learning-from-experience forecasts track the average

survey expectations closely. In the interpretation of this figure, it is important to keep in

mind that the good match is by no means a mechanical result. Our estimation of θ used only

cross-sectional differences in survey expectations between cohorts, but no information about

the level of the average survey expectation. It could have been possible, in principle, that

the θ that fits cross-sectional differences produces a time path for average expectations that

completely fails to match survey expectations. As the figure shows, though, the two time

paths match well.

Figure 7 also shows the time path of constant-gain-learning forecasts, using γ = 0.0180 as

in Figure 6, which minimizes the distance in the implied weights, relative to the experience-

based model. Not surprisingly, the forecasts are almost indistinguishable. This illustrates

further that at the aggregate level, the learning-from-experience expectations formation mech-

anism can be approximated well with constant-gain learning.

Finally, we also compare the average learning-from-experience forecast to a sticky-information

forecast. Sticky information, as in Mankiw and Reis (2002) and Carroll (2003), induces sticki-

ness in expectations, and it is possible that our estimation of the learning-from-experience rule

might be picking up some of this stickiness in expectations. We calculate sticky-information

inflation expectations as in Carroll’s model as a geometric distributed lag of current and past

quarterly SPF forecasts of one-year inflation rates.5 We set the weight parameter λ = 0.25
5We use the 1-year inflation forecasts that the SPF constructs from median CPI inflation forecasts for
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Figure 7: Average survey expectations (actual) compared with average learning-from-
experience forecasts, constant-gain forecasts, and sticky-information forecasts.

as in Mankiw and Reis (2002) (and similar to λ = 0.27 estimated in Carroll (2003)). The

resulting sticky-information forecast is shown as the short-dashed line in Figure 7. The graph

illustrates that the experience-based model helps to predict actual forecast data beyond the

predictive power of the sticky-information model. For example, experience-based forecasts

track actual forecasts more closesly during the peak around 1980 and also during the 2000s

(though both model fail to match the highly positive expectations towards the end of the the

decade).

We evaluate the economic and statistical significance of this graphical impression in Table

2. We regress the average survey expectations in quarter t on the average forecast predicted

by learning-from experience (column (i)), by constant-gain learning (column (ii)), and by the

sticky-information model (column (iii)). The learning-from-experience model in (9) predicts a

each of the four quarters ahead. Before 1981Q3, when the CPI inflation forecast series is not available, we use
the GDP deflator inflation forecast series.
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Table 2: Explaining mean inflation expectations

OLS regressions with quarterly data from 1973Q1 to 2009Q4 (with gaps). The dependent variable
is the forecast of one-year inflation made during quarter t, averaged across all cohorts. Newey-West
standard errors (with 5 lags) are shown in parentheses.

(i) (ii) (iii) (iv)

Learning-from-experience forecast 0.887 0.695
(0.120) (0.132)

Constant-gain-learning forecast 0.931
(0.137)

Sticky-information forecast 0.878 0.390
(0.199) (0.150)

Intercept 0.009 0.008 0.011 -0.000
(0.005) (0.005) (0.006) (0.005)

Adj. R2 0.564 0.555 0.602 0.715
#Obs. 173 173 129 129

coefficient on the experience-based forecast of one, and column (i) shows that the estimated

coefficient of 0.887 is close to one, and less than one standard error away from it. With

56.4% the adj. R2 is high. This confirms the informal graphical impression in Figure 7 that

the learning-from-experience forecast closely tracks the actual average survey expectations.

Not surprisingly, given the similarity of τ̄ht and constant-gain learning forecasts, using the

constant-gain learning forecast as explanatory variable in column (ii) produces almost iden-

tical results. The explanatory power of the sticky-information forecast in column (iii) is also

similar, only a bit lower and a bit noisier, and the adj. R2 is slightly higher.

Most importantly, we add the sticky-information forecast as an explanatory variable along

with the learning-from-experience forecast in column (iv). We find that the coefficient on the

learning-from-experience forecast becomes slightly smaller, but remains large (also relative to

the sticky-information coefficient) and significant. Hence, we can conclude that the learning-

from-experience forecast does not just pick up the sticky-information effect of Mankiw and

Reis (2002) and Carroll (2003).
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5.3 Learning from experience as foundation of perpetual learning

Despite the similarity between learning from experience and constant-gain learning at the

aggregate level, the models differ in a fundamental way concerning the motivation for the

down-weighting of past data and the constant gain. The standard motivation for the dis-

counting of past data in constant-gain learning is the concern that structural changes or

drifting parameters have rendered historical data in the distant past irrelevant for the esti-

mation of the current parameters of the perceived law of motion. Learning-from-experience

attributes the down-weighting to memory of past data being lost as older generations die and

new ones are born. As Sargent (1999), Orphanides and Williams (2005), and Milani (2007)

have emphasized, perpetual learning is important for explaining macroeconomic dynamics.

It is therefore important to identify the underlying reasons that give rise to perpetual learn-

ing. Only then is it possible to make predictions about the circumstances in which economic

agents are likely to update with a high or low gain.

Within the standard framework, it has been difficult to rationalize the value of the gain

parameter that best explains the dynamics of survey expectations. If individuals’ concerns

about structural change and parameter drift motivate the down-weighting of data in the

distant past, the degree of down-weighting, and hence the gain, should depend on the nature

of the stochastic process that individuals are trying to estimate. Individuals should use high

gains for processes that are subject to frequent structural changes and substantial parameter

drift. The gain should be chosen in such a way that it minimizes the loss from forecast

errors. Empirically, however, there seems to be a disconnect between these statistically

optimal gains and the gains implied by observed survey expectations. Using a quadratic

loss function, Branch and Evans (2006) find that the optimal gain that minimizes inflation

forecast errors is substantially higher than the gain that delivers the best fit to the Survey of

Professional Forecasters (SPF ) inflation forecasts.

A similar pattern exists in the Michigan Survey data. Figure 8 presents, on top, recursive

estimates of the optimal gain that minimizes the MSE in constant-gain learning forecasts
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Figure 8: Recursive comparison of optimal gain with gains implied by constant-gain and
learning-from-experience model estimates. The optimal gain (solid line) minimizes the MSE
in one-year inflation forecasts, and it is estimated over expanding windows, where the first
extends from 1953Q4 to 1977Q4. Gains implied by constant-gain (long-dashed line) and
learning-from-experience (short-dashed line) models are estimated over the same windows,
employing only non-imputed data, where the constant-gain model is fitted to mean expecta-
tions, while the learning-from-experience model is fitted to cohort data as in column (ii) in
Table 1 and the estimate of θ is converted to an implied gain as in Figure 6.

of one-year inflation rates. (The first estimation window extends from 1953Q4 to 1977Q4;

subsequent ones expand while keeping the starting point fixed.) For the most part, the

optimal gain is relatively high, around 0.08, consistent with the optimal gain calculated by

Branch and Evans (2006). The gains implied by our learning-from-experience model fitted

to MSC expectations data, instead, are much lower, consistent with the gain estimates in

Branch and Evans (2006) that best fits the SPF inflation expectations. We calculate these

implied gains by estimating θ as in column (ii) in Table 1, but now with expanding estimation

windows, and then, as in Figure 6, picking the gain in a constant-gain learning rule that most

closely matches the learning-from-experience model. Figure 8 also plots the gain estimates
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from fitting a constant-gain learning rule to mean inflation expectations from the MSC.6 The

estimated gains are slightly higher than the implied gains from the learning-from-experience

rule, but the difference is small compared with the big gap to the statistically optimal gains.

Apparently, both professionals (in the SPF ) and households (in the MSC) discount past

inflation data much less than the degree of structural change in the time-series of inflation

would call for. Moreover, the degree of structural change in different time series does not

seem to be systematically related to the gains implied by survey expectations—at least in

the relatively stable environment of post-war US data.7 For example, Branch and Evans

(2006) find that the statistically optimal gain for GDP forecasting is much lower than the

optimal gain for inflation forecasting—indicating a lower degree of structural change in the

GDP series—but the gains that each fit best the survey expectations on inflation and GDP

expectations are almost identical.

This lack of connection between the degree of structural change in macroeconomic time

series and the gains in survey-data estimates of learning rules suggests that alternative rea-

sons besides structural change may account for the discounting of past observations that is

evident in survey expectations data. The learning-from-experience framework provides such

an alternative explanation: memory of past data is lost as older generations die and new

ones are born. Thus, even if each individual used a decreasing gain that weighted all data

realized during her lifetime equally, the mean expectation in the population would resemble

the forecast from a constant-gain learning model. This explanation of perpetual learning is

not only consistent with the time-series of aggregate inflation expectations, but also, as we

have shown above, with cross-sectional heterogeneity of inflation expectations, and, as shown

in Piazzesi and Schneider (2012), with heterogeneity in borrowing and lending and asset price

movements that are driven by this heterogeneity in inflation expectations.
6Since our imputation procedure is not suitable for imputation of mean expectations, only for cross-sectional

differences, we can use only non-imputed data in the estimation of the constant-gain learning rule. For
comparability, we therefore also use non-imputed data in the estimation of the learning-from-experience model,
i.e. as in column (ii) of Table 1 rather than column (i).

7Marcet and Nicolini (2003) propose a model where individuals update their expectations with decreasing
gain stable periods, but they switch to a constant gain when a large prediction error is detected
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Due to the finite memory implied by the finite life span of generations, the learning-from-

experience framework is consistent with approximate constant-gain learning in aggregate, but

the finite life-span feature does not fully explain the level of the implied gain. We estimate

θ = 3.044 in our full sample, while equally weighting each life-time observation of inflation

would imply θ = 1. Given our evidence from cross-sectional heterogeneity that individuals’

forecasts are shaped by their life-time experiences, we believe that it is more natural to

explain this down-weighting of experiences earlier in life implied by θ > 1 with a slow fading

of experiences as time progresses (and limited absorption of experiences very early in life)

rather than individuals’ concerns about structural change. This perspective would also help

to explain why survey respondents appear to use similar gains for macroeconomic time-series

with different structural change properties, as in Branch and Evans (2006).

5.4 Identification of the updating speed from cross-sectional heterogeneity

A second important difference between standard constant-gain learning and the learning-

from-experience framework is that the gain parameter θ, and hence the updating speed,

can be estimated from cross-sectional data because learning from experience induces cross-

sectional heterogeneity between age groups. This brings in a new dimension of data that can

help pin down the learning dynamics. As Chevillon, Massmann, and Mavroeidis (2010) show,

identification of structural parameters in macro models with adaptive learning is difficult, and

the problems are magnified if the parameters of the learning rule are unknown and need to be

estimated. Fitting the learning rule to the time path of mean or median survey expectations

can help pin down the learning-rule parameters, but the estimates may be imprecise.

As we have shown earlier, we obtain the most precise estimates of the gain parameter θ

when we focus purely on cross-sectional variation by employing time dummies in Table 1.

Here we show that this way of estimating the gain also yields the best pseudo-out-of-sample fit

to survey expectations. Figure 9 compares the pseudo-out-of-sample fit of the learning-from-

experience model with the constant-gain learning model. We estimate the gain parameters
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Figure 9: Pseudo-out-of-sample cumulative sum of squared errors in predicting mean inflation
expectation. For the constant-gain model, the gain parameter γ is estimated over expanding
windows, where the first extends from 1953Q4 to 1977Q4. For each window, mean expecta-
tions data until quarter t − 1 is used to estimate γ, and this estimate of γ is then used to
predict, based on inflation data until t− 1, the mean inflation survey expectation in quarter
t. The plot cumulates the sum of squared errors from this prediction. For learning from
experience, the plots are constructed in similar fashion, but based on estimates of θ from
cohort-panel expectations data as in column (ii) in Table 1.

in both models recursively, with expanding windows, where the first window extends from

1953Q4 to 1977Q4. For each window, expectations data until quarter t−1 is used to estimate

the gain parameter (mean expectations in case of the constant-gain model, and cohort data as

in column (ii) of Table 1 in case of the learning-from-experience model), and we then predict,

based on this gain estimate and historical inflation data until t−1, the mean inflation survey

expectation in quarter t. In case of the learning-from-experience model this prediction is

given by τ̄ht as in (9), in the case of constant-gain learning it is simply the fitted value of the

constant-gain learning rule. The figure plots the cumulative sum of squared errors from these

prediction from 1978Q1 to the end of the sample.
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As Figure 9 shows, the learning-from-experience rule, with θ estimated from cross-sectional

heterogeneity between cohorts, has a slight advantage in terms of pseudo-out-of-sample fit

compared with the constant-gain rule. It achieves this advantage even though no information

on the level of mean expectations is used in the estimation of θ, as all of it is absorbed by the

time dummies. Evidently, the time dummies are helpful in absorbing common noise factors

in the mean survey expectations that are otherwise obscuring the relationship between survey

respondents’ inflation expectations and historical inflation data.

6 Discussion and conclusion

Our empirical analysis shows that individuals’ inflation expectations differ depending on the

characteristics of the inflation process experienced during their life times. Differences in the

experienced mean inflation rate and the persistence of inflation shocks generate (time-varying)

differences in inflation expectations between cohorts. The experience of younger individuals is

dominated by recent observations, while older individuals draw on a more extended historical

data set in forming their expectations.

Such learning from experience can explain, for example, why young individuals forecasted

much higher inflation than older individuals following the high inflation years of the late 1970s

and early 1980s. Both the mean rate of inflation and inflation persistence were particularly

high in the short data set experienced by young individuals at the time. Learning-from-

experience complements the sticky information explanation put forward in Mankiw and Reis

(2002) and Carroll (2003) for the same time period.

For the more recent time period towards the end of our sample in 2010, our estimates imply

that the perception of the persistence of inflation shocks is close to zero, particularly for young

individuals. This suggests that unexpected movements in the inflation rate are currently

unlikely to move inflation expectations much. As argued in Roberts (1997), Orphanides and

Williams (2005), and Milani (2007), these changes in individuals’ perceptions of persistence

are likely to influence, in turn, the persistence of inflation rates.
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The learning-from-experience framework differs from more conventional representative-

agent applications of learning in that it generates heterogeneity in inflation expectations.

Nevertheless, its implications for the average level of inflation expectations are similar to

those resulting from representative-agent constant-gain learning algorithms that are popular

in macroeconomics (see, e.g., Orphanides and Williams (2005); Milani (2007)). There are,

however, two important differences.

First, differently from constant-gain learning models, the learning-from-experience theory

relies on psychology evidence and micro-data to motivate non-standard learning mechanisms.

Information in the distant past is discarded not only because of structural shifts and param-

eter drift, but also because memory of macroeconomic history is lost as new generations

emerge whose subjective beliefs are shaped by relatively recent experience. This is an addi-

tional reason why learning dynamics may be perpetual, without convergence in the long-run.

Second, in the learning-from-experience framework, the heterogeneity between cohorts can

be exploited to estimate the speed of updating in response to inflation surprises. This is useful

because the existing difficulties in identifying the gain parameter from macro data. In light

of this, it is remarkable that our estimate of the speed of updating, averaged across cohorts,

are quantitatively similar to those obtained in earlier work in macroeconomics that estimated

the speed of updating to fit macroeconomic time-series or aggregate survey expectations.

The heterogeneity between young and old in their views about future inflation can also

produce interesting macroeconomic effects. Disagreement about future inflation leads to

disagreement about real interest rates (given that the nominal interest rate is fixed in financial

markets), which in turn influences borrowing and lending among households. Piazzesi and

Schneider (2012) analyze this mechanism, and they show that the disagreement between

younger and older households in the late 1970s helps understand quantities of household

borrowing and lending, shifts in household portfolios, and the prices of real assets at the

time.
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Appendix

A Implied weighting of past data with learning from experi-
ence

The learning-from-experience algorithm in our analysis implicitly weights past observations
in almost exactly similar fashion as the (ad-hoc) weighting function in Malmendier and Nagel
(2011). Moreover, the parameter θ that controls the strength of updating in the framework
here maps into the parameter that controls the weighting function in Malmendier and Nagel
(2011). This makes the results easily comparable.

To see the weighting of past data implied by the learning-from-experience rule, consider
an individual born in year s making an inflation forecast at time t and rewrite (2), as

Rt,sbt,s = Rt,sbt−1,s + γt,sxt−1(πt − b′t−1,sxt−1)

= (Rt,s − γt,sxt−1x
′
t−1)bt−1,s + γt,sxt−1πt

= (1− γt,s)Rt−1,sbt−1,s + γt,sxt−1πt

= (1− γt−1,s)(1− γt,s)Rt−2,sbt−2,s + γt−1,s(1− γt,s)xt−2πt−1 + γt,sxt−1πt, (A.1)

where the second-to-last equality follows from (3). Now consider equation (3),

Rt,s = Rt−1,s + γt,s(xt−1x
′
t−1 −Rt−1,s)

= (1− γt,s)Rt−1,s + γt,sxt−1x
′
t−1

= (1− γt−1,s)(1− γt,s)Rt−2,s + γt−1,s(1− γt,s)xt−2x
′
t−2 + γt,sxt−1x

′
t−1. (A.2)

Thus, iterating further on (A.1) and (A.2), we can write Rt,sbt,s = X ′ΩY and Rt,s = X ′ΩX,
where X collects stacked xt−1−k and Y collects stacked πt−k for k ∈ {0, 1, ..., t− s}, and Ω is
diagonal, with diagonal elements

ω̃t,s (k) =
{

γt,s for k = 0
γt−k,s

∏k−1
j=0 (1− γt−j,s) for k > 0

. (A.3)

Thus, bt,s = R−1
t,sRt,sbt,s = (X ′ΩX)−1X ′ΩY , i.e., the learning-from-experience scheme is a

recursive version of a weighted-least squares estimate with weighting matrix Ω.
For comparison, the weighting function in Malmendier and Nagel (2011) assigns observa-

tions at time t− k (with k ≤ t− s) the weight

ωt,s (k) =
(t− s− k)λ∑t−s
j=0 (t− s− j)λ

. (A.4)

We now show that both weighting schemes are equivalent if the learning-from-experience
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gain sequence is chosen to be age-dependent in the following way:

γt,s =
(t− s)λ∑t−s

j=0 (t− s− j)λ
. (A.5)

We present a proof by induction. First, the choice of γt,s in (A.5) implies that ω̃t,s (0) =
ωt,s (0). It remains to be shown that if ω̃t,s (k) = ωt,s (k), then ω̃t,s (k + 1) = ωt,s (k + 1)
(with k + 1 ≤ t− s). Thus, assume that

ω̃t,s (k) =
(t− s− k)λ∑t−s
j=0 (t− s− j)λ

. (A.6)

Then, from Eq. (A.3),

ω̃t,s (k + 1)

= γt−k−1,s
(1− γt−k,s)
γt−k,s

ω̃t,s (k)

=
(t− k − 1− s)λ∑t−k−1−s

j=0 (t− k − 1− s− j)λ

(∑t−k−s
j=0 (t− k − s− j)λ

(t− k − s)λ
− 1

)
ω̃t,s

=
(t− k − 1− s)λ∑t−k−1−s

j=0 (t− k − 1− s− j)λ

(∑t−k−1−s
j=0 (t− k − 1− s− j)λ

(t− k − s)λ

)
ω̃t,s

=
(t− k − 1− s)λ∑t−s
j=0 (t− s− j)λ

= ωt,s (k + 1) , (A.7)

This concludes the proof.
Finally, we show that the gain sequence (A.5) can be approximated by

γt,s ≈
λ+ 1
t− s

, (A.8)

i.e., by the gain specification in (4) with θ = λ + 1. Focusing on the denominator of (A.5),
note that if one were to make the increments of the summation infinitesimally small, the
denominator would become

∫ t−s
0 xλdx = 1

λ+1(t − s)λ+1. Therefore, in the limiting case of
infinitesimal increments, we get

γt,s =
λ+ 1
t− s

. (A.9)

In our case with quarterly increments, this approximation in (A.8) is virtually identical with
the true gain sequence in (A.5).
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B Michigan Survey data

Before 1960, age was collected as a categorical variable, and so in those years we only have
five or nine age groups. From 1960 onwards, the exact birth year was collected as age variable
and we have 50 age groups (age 25 to 74).

The one-year inflation expectations data is derived from the responses to two questions.
The first is categorical, while the second one elicits a percentage response:

1. “During the next 12 months, do you think that prices in general will go up, or go down,
or stay where they are right now?”

2. “By about what percent do you expect prices to go (up/down) on average during the
next 12 months?”

We follow Curtin (1996) to adjust the raw data for several known deficiencies, which is
also the approach used by the Michigan Survey in constructing its indices from the survey
data:

For respondents who provided a categorical response of “up” (“down”), but not a percent-
age response, we drew a percentage response from the empirical distribution of percentage
responses of those who gave the same categorical response of “up” (“down”) in the same
survey period. Prior to the February 1980 survey, respondents were not asked about percent-
age expectations if they responded (in the categorical first part of the question) that they
expected prices to decline. We assign a value of -3% to these cases before February 1980. In
most survey periods, they account for less than 2% of observations.

Starting in March 1982 the administrators of the Michigan survey implemented additional
probing, which revealed that the categorical response that prices will remain the “same” was
often misunderstood as meaning that the inflation rate stays the same. We use the adjustment
factors developed in Curtin (1996) to adjust a portion of “same” responses prior to March
1982 to “up”, and we assign a percentage response by drawing from the empirical distribution
of those observations in the same survey period with a categorical response of “up.”

C Imputation of percentage expectations from categorical re-
sponses

In the early years of the Michigan survey, only categorical responses about prices going
“up,” “down,” or staying the “same” were elicited. We attempt to use the information in
those surveys by imputing percentage responses from the categorical information. We do so
by estimating the relationship between categorical responses, the dispersion of categorical
responses, and percentage responses in those periods in which we have both categorical and
percentage response data. We conjecture that the average percentage response of individuals
in an age group should be positively related to the proportion of “up” responses and negatively
to the proportion of “down” responses.

We first calculate the proportion of “up” and “down” responses, pupt,s and pdownt,s , within
each cohort s at time t (in this case t denotes a calendar month). We then run a pooled
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Figure A.1: Actual and imputed one-year inflation expectations in excess of the full-sample
cross-sectional mean expectation.

regression of measured percentage inflation expectations, π̃1
t+4|t,s, on pupt,s and pdownt,s , including

a full set of time dummies, and obtain the fitted values

π̃1
t+1|t,s = ...time dummies... + 0.056pupt,s − 0.072pdownt,s (adj. R2 = 52.9%)

(0.001) (0.004)

with standard errors in parentheses that are two-way clustered by quarter and cohort.
Because we employ time dummies in our main analysis, our main concern here is whether

the imputed expectations track well cross-sectional differences of expectations across age
groups, rather than the overall mean over time, and so we also estimate the relationship
between percentage expectations and categorical responses with time dummies included in
the regression.

Figure A.1 illustrates how the imputed percentage expectations compare with the actual
expectations in the time periods in which we have both categorical and percentage expec-
tations data. To focus on cross-sectional differences between age groups, the figure shows
the average fitted and actual values (in terms of four-quarter moving averages) for individ-
uals below 40 and above 60 years of age after subtracting the overall cross-sectional mean
expectation in each time period.
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Table A.1: Controlling for age-specific inflation rates

The estimation is similar to Table 1, but with interactions of age with the experimental CPI for the
elderly in column (ii) and the CPI for gasoline in column (iv) included as control variable. In columns
(i) and (ii), the sample runs from 1984 to 2009, the period for which lagged four-quarter inflation
rates from the experimental CPI for the elderly are available. In column (iii) the sample extends from
1953 to 2009. Standard errors in parentheses are two-way clustered by time and cohort.

(i) (ii) (iii)

Gain parameter θ 2.561 3.475 3.720
(0.275) (0.591) (0.414)

Sensitivity β 0.408 0.432 0.599
(0.085) (0.092) (0.089)

Age
100 -0.004 -0.009

(0.003) (0.002)
Age
100 × (π4,Elderly

t−1 − π4
t−1) -0.491

(0.938)
Age
100 × (π4,Gas

t−1 − π4
t−1) -0.011

(0.010)

Time dummies Yes Yes Yes

Adj. R2 0.245 0.246 0.639
#Obs. 5200 5200 8215

D Controlling for age-specific inflation rates

We re-run the regressions from Table 1 with controls for age-specific inflation-rates. We
measure the inflation rates of the elderly from the experimental CPI for the elderly series
(CPI-E) provided by the Bureau of Labor Statistics. We calculate annualized quarterly
log inflation rates from the CPI-E, similar to our calculation of overall CPI inflation rates.
We then include in our regressions the difference between the CPI-E and CPI four-quarter
inflation rates, π4,Elderly

t−1 − π4
t−1, interacted with age. (Calculating this difference term with

quarterly inflation rates produces similar results.)
Table A.1 presents the results. The inflation series based on the CPI-E is only available

from the end of 1983 onwards, and so the sample in columns (i) and (ii) is restricted to 1984Q1
to 2009Q4. As a basis for comparison, we therefore first re-run the regression without the
additional age-dependent inflation control on this shorter sample. The results in column
(i) show that the estimate of the gain parameter is quite similar to the earlier estimate in
Table 1. The sensitivity parameter β is estimated to be lower than before but it remaines
statistically as well as economically significant. In column (ii) we add the interaction term
between age-related inflation differentials and age, as well as age itself. (The π4,Elderly

t−1 −π4
t−1
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difference term without the interaction is absorbed by the time dummies.) We obtain a small
and insignificantly negative coefficient on the interaction term, which is not consistent with
the idea that inflation expectations of the elderly are positively related to the inflation rates
on the consumption basket of the elderly. Including age and the interaction term does have
some effect on the estimates for θ. With 3.475, the point estimate is higher than in column
(i), though the difference is not significant.

Column (iii) reports similar tests, but with the CPI-E replaced with the gasoline com-
ponent of the CPI from the Bureau of Labor Statistics. This series is available (with gaps)
since 1935. We can use our full sample of survey inflation expectations from 1953 to 2009
in this case, and there is thus no need to rerun the estimation on a shorter sample. The
estimates are directly comparable to those in column (i) of Table 1. As column (iii) shows,
adding the interaction of π4,Gas

t−1 − π4
t−1 with age does not have much effect. The interaction

term is insignificantly different from zero, β is largely unaffected, and the estimate of θ is
only slightly higher than in Table 1.
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